PEOs for the Institution-PG

PEO1: The graduates use scientific and computational technology to solve social issues and pursue research.

PEO2:. Our graduates will continue to learn and advance their careers in industry both in public and private sectors, government and academia.

PEOs for the PG Departments

Mathematics

PEO3:Our graduates will have the ability to apply analytical and theoretical skills to model and solve mathematical problems and to work as efficient professionals .

PO No.	Upon completion of M.Sc. Degree Programme, the graduates will be able to
	:
PO - 1	prepare successful professionals in industry, government, academia, research, entrepreneurial pursuits and consulting firms.
PO - 2	face and succeed in high level competitive examinations like NET, GATE and TOFEL.
PO - 3	carry out internship programmes and research projects to develop scientific skills and innovative ideas.
PO - 4	utilize the obtained scientific knowledge to create eco-friendly environment.

M.Sc. Mathematics (PO)

M.Sc. Mathematics (PSO)

PSO	Upon completion of the M.Sc. DegreeProgramme, the graduates	PO addressed
No.	will be able to:	
PSO - 1	utilize the knowledge gained for entrepreneurial pursuits.	PO 1
PSO - 2	sharpen their analytical thinking, logical deductions and rigour in reasoning.	PO 2
PSO - 3	use the techniques, skills and modern technology necessary to communicate effectively with professional and ethical responsibilities.	PO 3
PSO - 4	understand the applications of mathematics in a global economic environmental and societal context.	PO 4

Course Outcomes

Name of the Course	: Algebra I

Subject code

Semester

: PM2011

: I

CO No.	Upon completion of this course, students will be able to	PSOs	CL
		addressed	
CO -1	understand the fundamental concepts of abstract algebra and give illustrations.	PSO- 1	U
CO -2	analyze and demonstrate examples of various Sylow p- subgroups, automorphisms, conjugate classes, finite abelian groups, characteristic subgroups, rings, ideals, Euclidean domain, Factorization domain.	PSO- 2	An
CO -3	develop proofs for Sylow's theorems, finite abelian groups, direct products, Cauchy's theorem, Cayley's Theorem, automorphisms for groups.	PSO- 2	С
CO -4	develop the way of embedding of rings and design proofs for theorems related to rings, polynomial rings, Division Algorithm, Gauss' lemma and Eisenstein Criterion	PSO- 2	С
CO -5	apply the concepts of Cayley's theorem, Counting principles, Sylow's theorems, Rings and Ideals in the structure of certain groups of small order.	PSO-4	Ap

Semester

: I

Major Core II

Major Core I

Name of the Course	: Analysis I
Subject code	: PM2012

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO -1	explain the fundamental concepts of analysis and their role in modern mathematics.	PSO-3	U, Ap
CO -2	deal with various examples of metric space, compact sets and completeness in Euclidean space.	PSO- 2	An
CO -3	utilize the techniques for testing the convergence of sequence and series	PSO-1	Ар
CO -4	understand the important theorems such as Intermediate valued theorem, Mean value theorem, Roll's theorem, Taylor and L'Hospital theorem	PSO-3	U
CO -5	apply the concepts of differentiation in problems.	PSO- 4	Ар

Major Core III

Name of the Course : Probability and Statistics

: I

Subject code : PM2013

Semester

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	recall the basic probability axioms, conditional probability, random variables and related concepts	PSO-2	R
CO- 2	compute marginal and conditional distributions and check the stochastic independence	PSO-2	U, Ap
CO- 3	recall Binomial, Poisson and normal distributions and learn new distributions such as multinomial, Chi square and Bivariate normal distribution	PSO-4	R,U
CO- 4	learn the transformation technique for finding the p.d.f of functions of random variables and use these techniques to solve related problems	PSO-1,3	U, Ap
CO -5	employ the relevant concepts of analysis to determine limiting distributions of random variables	PSO-5	Ар

Semester	:I	Major Core IV
Name of the Course	: Ordinary differential equations	
Subject code	: PM2014	

со	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the definitions of degree and order of differential equations and determine whether a system of functions is linearly independent using the Wronskian definition.	PSO - 2	R,U
CO - 2	solve linear ordinary differential equations with constant coefficients by using power series expansion.	PSO - 3	Ар
CO - 3	determine the solutions for a linear system of first order equations.	PSO - 2	U
CO - 4	learnproperties of Legendre polynomials and Properties of Bessel Functions.	PSO - 4	U
CO - 5	analyze the concepts of existence and uniqueness of solutions of the ordinary differential equations.	PSO - 2	An
CO - 6	create differential equations for a large number of real world problems.	PSO - 1	С

Semester : I

Name of the Course : Numerical Analysis

Elective I

Course Code : PM2015

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the methods of finding the roots of the algebraic and transcendental equations.	PSO - 2	R
CO - 2	understand the significance of the finite, forward, backward and central differences and their properties.	PSO - 3	U
CO - 3	learn the procedures of fitting straight lines and curves.	PSO - 2	U
CO - 4	compute the solutions of a system of equations by using appropriate numerical methods.	PSO - 1	Ap
CO - 5	solve the problems in ODE by using Taylor's series method, Euler's method etc.	PSO - 4	Ap

Semester : II

Major Core V

Name of the course : Modules and Vector Spaces

Course code : PM2021

CO	Upon completion of this course the students will be able to :	PSOs addressed	CL
CO - 1	recall the definitions and properties of Vector Spaces and Subspaces	PSO - 2	R
CO - 2	analyze the concepts Linear Independence, Dependence and Basis	PSO - 2	An
CO - 3	apply the definition and properties of Linear transformation and Matrices of Linear transformation	PSO - 3	Ap
CO - 4	gain knowledge about characteristic polynomial, eigen vectors, eigen values and eigen spaces as well as the geometric and the algebraic multiplicities of an eigen value	PSO - 1	U
CO - 5	learn and apply Jordan form and triangular form for computations	PSO - 4	U

Semester	: II
----------	------

Major Core VI

Name of the Course : Analysis II

Subject code : PM2022

СО	Upon completion of this course the students will be able to :	POs/PSOs addressed	CL
CO -1	recall the definition of continuity, boundedness and some results on uniform convergence	PSO-1	R
CO -2	recognise the difference between pointwise and uniform convergence of a sequence of functions and Riemann Stieltjes integrals.	PSO-2	An
CO -3	understand the close relation between equicontinuity and uniform convergence of sequence of continuous function and rectifiable curves	PSO-3	U
CO -4	learnParseval's theorem, Stone Weierstrass theorem and know about its physical significance in terms of the power of the Fourier components.	PSO-4	U
CO -5	utilize the definition of differentiation and partial derivative of function of several variables to solve problems	PSO-3	Ар

Semester

: II

Major Core VII

Name of the Course

Subject code

: PM2023

СО	Upon completion of this course the student will be able to:	PSOs addressed	CL
CO-1	recall the definitions of complete integral, particular integral and singular integrals.	PSO-2	R
CO-2	learn some methods to solve the problems of non- linear first order partial differential equations. homogeneous and non homogeneous linear partial differential equations with constant coefficients and solve related problems.	PSO-1	U
CO-3	analyze the classification of partial differential equations in three independent variables – cauchy's problem for a second order partial differential equations.	PSO-3	An
CO-4	solve the boundary value problem for the heat equations and the wave equation.	PSO-4	Ар

: Partial Differential Equations

CO-5	apply the concepts and methods in physical processes like	PSO-5	Ар
	heat transfer and electrostatics.		

Semester : II

Major Core VIII

Name of the Course : Graph Theory

Course Code : PM2024

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	identify cut vertices and understand various versions of connectedness of a graph.	PSO-1	An
CO - 2	understand the concept of Digraphs and characterize Eulerian Digraphs.	PSO-4	U,C
CO - 3	recall the definitions of Matchings and design proof for characterization of graphs containing a 1-factor.	PSO-1	R
CO - 4	solve problems involving coloring and learn necessary conditions for planar graphs.	PSO-2,3	Ар
CO - 5	learn the basic definitions of domination and review the concept of distance in a graph.	PSO-4	U

Semester	: II	Elective II
Name of the Course	: Classical Dynamics	
Course code	: PM2025	

СО	Uponcompletion ofthiscoursethestudents Willbeableto:	PSO addressed	C L
CO-1	recall the concepts of Newton's laws of motion, momentum,		
	acceleration, motion of a particle.	PSO-4	R
CO–2	understanding the generalized co-ordinates of the Mechanical system.	PSO-1	
			U
CO–3	apply D'Alembert's Principle to solve the problems involving	PSO-2	Ар
	System of particles.		
CO-4	Solve the Newton's equations for simple configuration using	PSO-1	
	Various methods.		С

CO-5	transforming the Lagrangian equations to Hamiltonian	PSO-2	
	equations.		U
CO-6	define the canonical transformations and Lagrange and Poisson	PSO-4	R
	brackets.		

Semester : III

Name of the course : Field Theory and Lattices

Major Core IX

Major Core X

Course code : PM2031

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	recall the definitions and basic concepts of field theory and	PSO - 2	U
	lattice theory		
CO - 2	express the fundamental concepts of field theory, Galois	PSO - 2	U
	theory		
CO - 3	demonstrate the use of Galois theory to construct Galois	PSO - 3	Е
	group over the rationals and modules		
CO - 4	distinguish between field theory and Galois theory	PSO - 3	Ар
CO - 5	interpret distributivity and modularity and apply these	PSO - 4	Ар
	concepts in Boolean Algebra		

Semester	: III
Name of the Course	: Topology
Course code	: PM2032

СО	Upon completion of this course the students	PSO addressed	CL
CO - 1	understand the definitions of topological space, closed sets,	PSO - 3	U
	separation axioms and countability axioms.		
CO - 2	construct a topology on a set so as to make it into a topological space	PSO - 4	C
CO - 3	distinguish the various topologies such as product and box topologies and topological spaces such as normal and regular spaces.	PSO - 3	U, An
CO - 4	compare the concepts of components and path components, connectedness and local connectedness and countability axioms.	PSO - 2	E, An
CO - 5	apply the various theorems related to regular space, normal space, Hausdorff space, compact space to other branches of mathematics.	PSO - 1	Ар
CO - 6	construct continuous functions, homeomorphisms and projection mappings.	PSO - 4	С

Semester : III

Name of the Course : Measure Theory and Integration

Major Core XI

Subject Code :PM2033

СО	Upon completion of this course thestudents	PSOs	CL
	will be able to :	addressed	
CO - 1	define the concept of measures and Vitali covering and recall	PSO - 1	R
	some properties of convergence offunctions,		TT
2	Riemann integrals, Lebesgue integrals.	PSO - 3	U
CO - 3	apply measures and Lebesgue integrals to various measurable sets and measurable functions	PSO - 2	Ap
CO - 4	apply outer measure, differentiation and integration to intervals, functions and sets.	PSO - 2	Ap
CO - 5	compare the different types of measures and Signed measures	PSO - 3	An

Semester : III

Elective III

Name of the Course: Algebraic Number Theory and Cryptography

Course code

: PM2034

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	Recall the basic results of field theory	PSO - 1	R
CO - 2	Understand quadratic and power series forms and Jacobi symbol	PSO - 2	U
CO - 3	Apply binary quadratic forms for the decomposition of a number into sum of sequences	PSO - 3	Ар
CO - 4	Determine solutions using Arithmetic Functions	PSO - 3	Ар

<u> </u>	and draw Ferrer's graph Identify the public key using Cryptography	PSO - A	Δn
Semester	: IV N	lajor Core X	II

Name of the Course : Complex Analysis

Subject code : PM2041

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	understand the fundamental concepts of complex variable theory	PSO - 1	U
CO - 2	effectively locate and use the information needed to prove theorems and establish mathematical results	PSO - 3	R
CO - 3	demonstrate the ability to integrate knowledge and ideas of complex differentiation and complex integration	PSO - 4	U
CO - 4	use appropriate techniques for solving related problems and for establishing theoretical results	PSO - 3	Ар
CO - 5	evaluate complicated real integrals through residue theorem	PSO – 2,4	E

Major Core XIII

Name of the Course : Functional Analysis

Course Code

: PM2042

: IV

СО	Upon completion of this course the students	PSOs	CL
	will be able to :	addressed	
CO – 1	learn and understand the definition of linear space,	PSO - 1	R
	normed linear space, Banach Space and their examples		
CO – 2	explain the concept of different properties of Banach	PSO -2	U
	Spaces, Hahn Banach theorem		
CO – 3	compare different types of operators and their properties,	PSO - 2	Ар
	Natural imbedding		
CO – 4	explain the ideas needed for open mapping theorem,	PSO - 1	С
	Open Mapping theorem		

CO – 5	construct the idea of projections, the spectrum of an operator	PSO - 1	Ар
	and develop problem solving skills , Matrices,		
	Determinants		

Semester : IV

Major Core XIV

Name of the course : Operations Research

Course code : PM2043

	Upon completion of this course the students	PSO	
CO	will be able to :	addressed	CL
CO - 1	explain the fundamental concept of DP model, Inventory model and Queuing model	PSO - 2	U
CO - 2	relate the concepts of Arrow (Network)diagram representations, in critical path calculations and construction of the Time chart	PSO - 3	U
CO - 3	distinguish deterministic model and single item	PSO - 3	E
CO - 4	interpret Poisson and Exponential distributions and apply these concepts in Queuing models	PSO - 4	Ар
CO - 5	solve life oriented decision making problems by optimizing the objective function	PSO - 1	С

Semester

Major Core XV

Name of the course : Algorithmic Graph Theory

: **IV**

Course code : PM2044

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO - 1	understand basic algorithms and write algorithms for simple	PSO - 1	U
	computing		Е

CO - 2	analyze the efficiency of the algorithm	PSO - 2	An
CO - 3	understand and analyze algorithmic techniques to study basic	PSO - 2	R
	parameters and properties of graphs		An
CO - 4	use effectively techniques from graph theory, to solve practical problems in networking and communication	PSO - 3	Ар

Semester: IVElective IV (a)

Name of the Course : Combinatorics

Course Code : PM2045

CO	Upon completion of this course the students	PSO	СІ
	will be able to :	addressed	CL
CO - 1	discuss the basic concepts in permutation and combination,	PSO - 1	U
	Recurrence Relations, Generating functions, The Principle of		
	Inclusion and Exclusion		
CO - 2	distinguish between permutation and combination, distribution	PSO - 2	An
	of distinct and non-distinct objects		
CO - 3	correlate recurrence relation and generating function	PSO - 2	An
CO -4	solve problems by the technique of generating functions,	PSO - 3	Ар
	combinations, recurrence relations, the principle of inclusion		
	and exclusion		
CO - 5	interpret the principles of inclusion and exclusion, equivalence	PSO - 4	An
	classes and functions		Е